Discrete tomography by convex-concave regularization and D.C. programming

نویسندگان

  • Thomas Schüle
  • Christoph Schnörr
  • Stefan Weber
  • Joachim Hornegger
چکیده

We present a novel approach to the tomographic reconstruction of binary objects from few projection directions within a limited range of angles. A quadratic objective functional over binary variables comprising the squared projection error and a prior penalizing non-homogeneous regions, is supplemented with a concave functional enforcing binary solutions.Application of a primal-dual subgradient algorithm to a suitable decomposition of the objective functional into the difference of two convex functions leads to an algorithm which provably converges with parallel updates to binary solutions. Numerical results demonstrate robustness against local minima and excellent reconstruction performance using five projections within a range of 90◦. Our approach is applicable to quite general objective functions over binary variables with constraints and thus applicable to a wide range of problems within and beyond the field of discrete tomography. © 2005 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prior Learning and Convex-Concave Regularization of Binary Tomography

In our previous work, we introduced a convex-concave regularization approach to the reconstruction of binary objects from few projections within a limited range of angles. A convex reconstruction functional, comprising the projections equations and a smoothness prior, was complemented with a concave penalty term enforcing binary solutions. In the present work we investigate alternatives to the ...

متن کامل

A Benchmark Evaluation of Large-Scale Optimization Approaches to Binary Tomography

Discrete tomography concerns the reconstruction of functions with a finite number of values from few projections. For a number of important real-world problems, this tomography problem involves thousands of variables. Applicability and performance of discrete tomography therefore largely depend on the criteria used for reconstruction and the optimization algorithm applied. From this viewpoint, ...

متن کامل

Convex Analysis Approach to D. C. Programming: Theory, Algorithms and Applications

This paper is devoted to a thorough study on convex analysis approach to d.c. (difference of convex functions) programming and gives the State of the Art. Main results about d.c. duality, local and global optimalities in d.c. programming are presented. These materials constitute the basis of the DCA (d.c. algorithms). Its convergence properties have been tackled in detail, especially in d.c. po...

متن کامل

A graph matching algorithm based on concavely regularized convex relaxation

In this paper we propose a concavely regularized convex relaxation based graph matching algorithm. The graph matching problem is firstly formulated as a constrained convex quadratic program by relaxing the feasible set from the permutation matrices to doubly stochastic matrices. To gradually push the doubly stochastic matrix back to be a permutation one, an objective function is constructed by ...

متن کامل

Image Reconstruction by Multilabel Propagation

This work presents a non-convex variational approach to joint image reconstruction and labeling. Our regularization strategy, based on the KL-divergence, takes into account the smooth geometry on the space of discrete probability distributions. The proposed objective function is efficiently minimized via DC programming which amounts to solving a sequence of convex programs, with guaranteed conv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 151  شماره 

صفحات  -

تاریخ انتشار 2005